Influence of Hydrologic Flow on Benthic Microbial Enzyme Activity in Everglades Stormwater Treatment Areas (STAs)

<u>Tanumoy Bera</u>, Patrick W. Inglett, Kanika S. Inglett, Jill King

Flowing condition (Flow or No Flow)

- □ Bring in sediment (change C, N and P availability)
- □ Create nutrient gradients along transect path (inflow and outflow)
- □ Change water column depth
- Physically perturb the system

Objectives

Objective 1: Assess the effect of hydrologic flow on microbial abundance and activities in detritus (floc) layer along transect sites (inflow and outflow) in SAV and EAV system.

Objective 2: Investigate the relationship among microbial stoichiometries impacted by flow condition, transect sites and vegetation type

<u>Ho</u>: There is no change in microbial abundance and activities with flow conditions.

<u>Ho</u>: There is no effect of flow on microbial stoichiometries along the transect and vegetation.

Study Area

SAV (B7 & D7)

EAV (B7c & D7c)

Flow Events

Methods

MBC/N/P Chloroform fumigation/Extraction

Enzymes

C_Enz: β-glucosidase N_Enz: Leucine aminopeptidase/ N-acetyl-glucosaminidase P_Enz: Alkaline phosphatase/ Diesterase

Microbial Biomass Nutrient

Microbial Biomass Stoichiometry

Microbial Enzyme Activities

Specific Enzyme Activities

Enzyme Activity Stoichiometry

Discriminate Analysis of Stoichiometric Relationships

Flowing conditions (Flow or No Flow) impacted microbial stoichiometries in EAV and SAV differently

Discriminate Analysis of Stoichiometric Relationships

Water Chemistry & Microbial Stoichiometric Relationship

Axis	Eigen value	Variation explained (%)	Р
1	0.002	81	0.001
2	0.0004	18	0.002

Summary

Flow appears to stimulate only microbial biomass P and specific P enzyme activity specially at inflow

Transect position having influence on microbial biomass and enzyme activities indicating P limitation at outflow

Discriminate analysis also indicated lower C/P or N/P enzyme activity at outflow position indicating greater P demand

□ Soluble reactive P in flow water dictates the microbial and enzyme stoichiometries related to N and P

Acknowledgement

UF Wetland Biogeochemistry Laboratory

Sophia Carmen, Devin Leonard, Lindsey Mikell

South Florida Water Management District

Kathy Pietro, Matt Powers, Jake Dombrowski